

YOSEMITE

On/Off-Chain Hybrid Exchange System

Technical White Paper

Bezalel Lim / bezalel@yosemiteX.com Patrick O'Grady / patrick.ogrady@yosemiteX.com

Anthony Di Franco Joe Park Brandon Griffin

Ethan Kim Eugene Chung Eric Hwang Elizabeth Reichert

31 July 2017

©2017 Yosemite X Inc. All rights reserved

Abstract

The YOSEMITE On/Off-Chain Hybrid Exchange technology is designed to implement a highly

performant, secure, fully transparent and user-friendly exchange system for trading Asset-Share

tokens built upon the Ethereum blockchain, IPFS peer-to-peer storage and traditional server

side technology. Our hybrid system, an on/off-chain solution, overcomes the critical drawbacks

of a blockchain-based decentralized exchange system while still adopting the efficient and

performant processing capability of a centralized exchange system. With the hybrid model, users

do not directly handle a blockchain transaction fee (gas fees). Users can trade Asset-Share

tokens using an easily purchasable fiat-pegged stable coin, Digital USD (dUSD) instead of Ether

(Ethereum’s native currency), which is overly difficult to obtain for most users and is also highly

volatile. dUSD is an Ethereum-based token designed for YOSEMITE but can be utilized on other

decentralized applications. Our downloadable multi-platform client application takes full

advantage of our hybrid architecture while providing a user-friendly interface for our exchange

system with secure blockchain account management (implemented in a sandboxed

environment). In this paper, the Ethereum public blockchain is used as a target blockchain, but

YOSEMITE Hybrid technology can be implemented on any other public blockchains having

tokenization support(e.g. ERC20).

Contents

1 The YOSEMITE On/Off-Chain Hybrid Exchange System 2
1.1 Problems of Current Crypto Exchange Systems 2

1.1.1 Centralized Exchanges 2
1.1.2 Decentralized Exchanges 2

1.2 Introduction to the YOSEMITE On/Off-Chain Hybrid System 4
1.3 YOSEMITE On/Off-Chain Hybrid System Architecture Overview 6
1.4 Ethereum Smart Contracts for Asset-Share Token / Asset Token Registry / dUSD Token / Exchange Vault 7
1.5 Data Architecture of the YOSEMITE On/Off-Chain Hybrid System 9

1.5.1 Exchange Flow Data Structures 9
1.5.2 Off-chain Blockchain-like Data Structures with Blockchain Anchoring 17

1.6 Strictly Safer than Centralized Architecture 18
1.7 Initial Asset-Share Token Distribution System (for Asset Public Offerings - APOs) 20
1.8 Asset Acquisition and Shareholder Voting System 21

2 Digital USD - dUSD 22
2.1 dUSD Overview 22
2.2 dUSD System Architecture 23

2.2.1 Issuing dUSD 23
2.2.2 Redeeming dUSD 24
2.2.3 Transferring dUSD 25

2.3 Proof of Reserves Process 25
2.4 Decentralized Issuance of dUSD with Asset-Share Tokens 26

3 Multi-Platform Clients of YOSEMITE Hybrid Exchange 27
3.1 Current Ethereum Client Problems 27
3.2 Solutions 28

3.2.1 Connecting to a Remote Ethereum Node 28
3.2.2 API Injection In a Sandboxed Environment 28
3.2.3 A Packaged Client Application 29

3.3 Light Client on Mobile 29

1

1 The YOSEMITE On/Off-Chain Hybrid Exchange System

1.1 Problems of Current Crypto Exchange Systems

1.1.1 Centralized Exchanges

Currently, popular crypto exchange services (Coinbase, Poloniex, Kraken, Bitfinex, …) are highly

centralized systems. The market transactions of crypto assets (BTC, ETH, LTC, ETC, XRP, GNT,

…) on these centralized systems are processed by the application server and all relevant data are

held in centralized databases. For such systems, only the deposit/withdrawal transactions of a

crypto asset involve interaction with the public blockchain. Buy/sell order-books and trading

events are stored in database records on a centralized exchange server system for which only the

exchange operator has full read/write access.

This poses a problem for the crypto community. Regardless of exchange policy, centralized

exchanges cannot guarantee that trading data or transaction execution is fully transparent to

their users. There is always a possibility that data can be modified/manipulated by the service

operator or by an unauthorized malicious actor. There are many reported incidents of hacking,

malfunctioning systems, and suspected manipulation. Nonetheless, most trading volume for

crypto assets remains on centralized exchanges simply because centralized server systems are

currently the only solution efficient and performant enough to handle the huge amounts of

throughput necessary for a well-functioning exchange.

1.1.2 Decentralized Exchanges

With the advent of smart contract technology (Ethereum), fully decentralized crypto exchanges

like OasisDEX(Maker), EtherDelta, EtherEx, and VariabL have been (or are being) developed.

Exchange functionalities can be implemented by using smart contracts on the blockchain itself.

Through decentralized architecture, all trading actions (making/taking/cancelling orders, etc.)

can be handled exclusively on the blockchain, making all trading transactions transparent and

secure without a centralized server system.

Decentralized exchange systems are ideal but there are currently critical problems that make

them a less attractive option when compared to centralized architecture. Firstly, users have to

pay blockchain transaction fees (gas fees, in ETH) to execute trading actions. This is true even in

the cases of making open orders which are not immediately traded, and cancelling unfilled open

orders which needlessly consumes gas fees. This added cost can significantly reduce market
1

liquidity as traders pay costs simply to fill orders and are punished again when canceling them.

Even worse, blockchain transaction delay (limited by block confirmation time) is measured in

tens of seconds on the Ethereum network. This means that users have to wait long periods for

1 Currently, the gas cost on the Ethereum network ranges between $0.3 ~ $0.8 per transaction.

2

resolution of each trading action, even if the network is not congested. This is not tenable for an

efficiently functioning market where transaction executions should be measured in terms of

milliseconds, not tens of seconds. In times of high volatility or volume, a market with such long

execution granularity would struggle at best.

Additionally, for an ideal setup of a blockchain application, users must use a specialized web

browser (like Ethereum Mist) with a blockchain node running on the user’s local machine to

synchronize full blockchain data. Syncing can cause long wait times (often several hours) and

consume large portions of a machine’s local storage. Even after initial syncing a user usually has

to wait several minutes to synchronize incremental blockchain data. Moreover, decentralized

exchanges also have the disadvantage of storing order-book and trading data on-chain. With

large activity, and through prolonged usage, this will bloat the blockchain data size duplicated

on every full blockchain node. Crypto-currencies (like ETH) are used as a trading currency on

decentralized exchanges. Only users who already have these crypto-currencies can use

decentralized exchange services. This means that users must go through the burdensome

process of buying these currencies on external crypto-exchanges before trading. In addition,

crypto prices are very volatile, making traded asset prices unintentionally volatile, since buy/sell

order prices already on the order book denominated in volatile crypto-currencies (ETH) can

fluctuate drastically in terms of dollar prices.

With these current technological limitations, fully decentralized exchange systems are too

inefficient and expensive to be a viable option for a commercially successful product. In fact, the

YOSEMITE development team has already built and tested a fully decentralized exchange PoC

(Proof of Concept) for our asset token trading system using only the Ethereum blockchain and

IPFS peer-to-peer distributed storage with serverless architecture.
2

 Figure 1 - System Architecture of 1st Generation Fully Decentralized Asset Token Exchange System PoC, 2016

2 This PoC was completed in Dec. 2016, and can be found at http://exdappdev.artstockx.com by running
the Ethereum Mist Browser on the Ropsten test-net.

3

http://exdappdev.artstockx.com/

1.2 Introduction to the YOSEMITE On/Off-Chain Hybrid System

 - A hybrid exchange system with on/off-chain solutions and Digital USD (dUSD,

a fiat-pegged crypto token as a stable trading currency)

 Figure 2 - Hybrid Exchange System Architecture with On/Off Chain Systems

The YOSEMITE Hybrid system is designed to overcome the critical drawbacks of decentralized

exchange systems by adopting the efficient and performant transaction-processing capability of

centralized exchange systems while at the same time retaining the key blockchain benefits of

transparency and security. This is done by combining emerging decentralized system

technologies (blockchain / peer-to-peer distributed storage) with widely used secure and

performant traditional server side technology.

To achieve this, the balances (ledger) of Asset-Share and dUSD tokens are securely recorded on
3

the Ethereum blockchain while trading transactions are processed on exchange servers

transparently and securely. Since trading occurs off-chain, exchange users do not need to pay

blockchain transaction fees (gas fees) for each trading action and these trading transactions can

be processed in terms of milliseconds. Transparency and security of off-chain transactions are

ensured by requiring that any trading data generated by users and the exchange server is

cryptographically signed using an Ethereum account. The results of these signed transactions

are then published to immutable and secure public peer-to-peer storage (IPFS). This crypto

signing and publishing of all trading data implies that any third party can fully audit the history

of transactions generated by both users and the exchange system itself. Additionally, with dUSD,

3 We will discuss how dUSD tokens are issued and redeemed in section 3.

4

our fiat-pegged stable trading currency token, users can trade Asset-Share tokens easily without

the high-volatility issue of using crypto-currency (ETH) as trading currency.

The YOSEMITE exchange system is a specialized software platform for global trading of

Asset-Share tokens created for each asset (real estate, art pieces, …) listed through the

YOSEMITE service. However, the core technology behind the hybrid-style exchange system can

be applied to general crypto-currency / stock exchange systems.

Our development team has already developed the alpha test version of our hybrid-style

exchange system using Ethereum and IPFS. We open the alpha test system with this
4

whitepaper. The alpha test version is developed based on the Ethereum blockchain, but the

hybrid technology can be implemented on any other blockchains having tokenization

support(e.g. ERC20).

Decentralized Exchange
 [EtherDelta, YOSEMITE

PoC, …]

Centralized Exchange
[Coinbase, Poloniex,

Kraken, …]

Hybrid-style Exchange
[YOSEMITE Hybrid Alpha]

Transaction
Performance

Very Slow
Very Low Throughput

High Speed
High Throughput

High Speed
High Throughput

Blockchain Fee User pays Gas Fee (Ether) No Gas Fee No Gas Fee

Data
Transparency /

Auditability

Fully transparent /
auditable, but bloats the

blockchain

not transparent, data
could be manipulated,

Not auditable

All trading data is
transparent and auditable

User Account Blockchain Account
(created on client-side)

Server Generated User
Account

Blockchain Account
(created on client-side)

Fiat Stable
Coin - Fiat Money, USDT 5 Fiat-Pegged Token (dUSD)

User Interface Difficult (only blockchain
experts can use) Easy Easy

Trading Volume Very Low Volume Most Crypto Trading -

Table 1 - Exchange System Comparison

4 The alpha version can be tested at http://alpha.yosemitex.com by running Chrome web-browser +
MetaMask plugin on the Ethereum Rinkeby test-net.
5 USDT is a fiat backed crypto-token built on the Bitcoin and Omni protocols -
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf.

5

http://alpha.yosemitex.com/
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf

1.3 YOSEMITE On/Off-Chain Hybrid System Architecture Overview

Figure 3 - YOSEMITE On/Off-Chain Hybrid System Architecture Diagram

The YOSEMITE Hybrid system uses Ethereum blockchain accounts themselves as exchange

user accounts , and these are generated independently on the client side without any server
6

intervention. This is in contrast to the traditional centralized exchange systems in which users

need to sign-up / sign-in to the server system where the user account data and user credentials

are created and stored in a server side database which is managed and controlled by the

exchange service operator. Hence, the user’s exchange account is fully controlled by the user

rather than a centralized server.

In the YOSEMITE Hybrid Exchange system there are three main types of smart contracts: i)

Asset-Share smart contracts which are created for each listed asset (e.g. real estate, art piece, ...),

ii) the dUSD token smart contract for managing the trading currency, and iii) the Exchange

(Vault) smart contract for the exchange system.

All trading messages which indicate a user’s trading action (Buy-Order, Sell-Order,

Cancel-Order, ...) are cryptographically signed by the private key of that user’s Ethereum

account on the client side. Anyone, including the exchange server, can verify these cryptographic

signatures to make sure that a specific trading message is made by the owner of a specific

Ethereum account.

6 Ethereum accounts are public/private key pairs generated using secp256k1 elliptic curve cryptography.

6

User-signed trading messages are sent to the exchange server and at the same time published to

public IPFS peer-to-peer storage. Once on IPFS the immutability of published data is ensured by

IPFS’s content addressable storage system using a Merkle DAG data structure. The exchange

server gathers users’ buy/sell orders and then matches any validated buy/sell orders creating a

server generated order-matching (trade) transaction on a first-come, first-serve basis. All

order-matching transactions are also cryptographically signed with the private key of an

exchange-controlled account registered on the Exchange Vault smart contract. These

server-signed ‘Trade’ messages are published to IPFS public storage. In this way all exchange

transactions can be fully audited and verified by any external party.

During this process the exchange server manages its own server-side database to provide high

speed data services like real-time order books and stock price-charts to the client side

application. Because buy/sell orders and order-matching (trade) transactions are not directly

executed on the Ethereum blockchain but are instead processed on a high-speed exchange

server securely and transparently, no gas fee for the Ethereum blockchain is needed for user

trading actions, and transactions can be processed at a high rate comparable to traditional

centralized exchange services.

IPFS peer-to-peer storage is used as a public immutable database of exchange transaction

records similar to the way blockchain transactions are stored on the blockchain. Even in the

catastrophic event of an exchange server crash, the whole history of transaction data can be

restored from IPFS storage and the Ethereum blockchain with a mathematical guarantee that no

modification to the pre-crash exchange transaction data occurred.

Only deposit and withdrawal transactions of dUSD and Asset-Share tokens to/from the

exchange smart contract are actually executed directly on the Ethereum blockchain. All other

transactions such as buy/sell/cancel orders and order-matching (trade) are securely saved on

IPFS storage and used as proof data for the account balance settlement process upon a user’s

withdrawal request for dUSD or Asset-Share tokens. After account balance settlement

verification and confirmation occur between the exchange server and the user, an actual

Ethereum blockchain transaction is executed transferring dUSD/Asset-Share tokens from the

Exchange Vault smart contract to the user’s Ethereum account along with the confirmed account

balance settlement proof data.

1.4 Ethereum Smart Contracts for Asset-Share Token / Asset

Token Registry / dUSD Token / Exchange Vault

For each asset listed on YOSEMITE exchange, an Asset-Share Token Ethereum smart contract

instance is deployed with functions for the Asset-Share token account balance ledger, token

transfer of Asset-Share tokens (used for deposit/withdrawal to exchange), initial share

subscription and shareholder voting.

The addresses of the Asset-Share token smart contracts and the crypto hash addresses pointing

to the immutable asset metadata files (e.g., text, images, PDF files of authentication-related

7

documents, ...) on IPFS are registered on the Asset Token Registry Ethereum smart contract.

Only registered Asset-Share tokens can be deposited and traded on YOSEMITE exchange.

The dUSD token Ethereum smart contract includes functions for the dUSD token account

balance ledger, transfer of dUSD tokens (used for deposit/withdrawal to exchange) and

issuing/redeeming dUSD.

The Exchange Vault smart contract receives dUSD tokens and Asset-Share tokens from exchange

user accounts as deposits for trading, and has a withdrawal function which receives as

parameters proof hash of the exchange account balance settlement and the user’s signature.

dUSD tokens and Asset-Share tokens being traded through the exchange server are held in the

Exchange Vault contract and are unlocked when the withdrawal settlement process between the

user and exchange system is successfully completed.

Both the Asset-Share token smart contracts and the dUSD token smart contract are ERC20 and
7

ERC223 compatible. ERC223 is adopted to process the ‘deposit-to-exchange’ transactions of
8

Asset-Share/dUSD tokens efficiently with just one blockchain transaction (transfer) whereas

usually two transactions (approve/transferFrom) are needed in ERC20. With this, the

Exchange Vault is an ERC223 receiver smart contract (having a tokenFallback function). The

Exchange Vault smart contract generates Deposit/Withdrawal Ethereum blockchain log events

so that any other system including the exchange server can securely capture all token transfer

transactions to/from the Exchange Vault smart contract.

A top-priority design goal of the YOSEMITE Hybrid Exchange System is that average users

having no ETH should be able to use the Ethereum blockchain-based YOSEMITE service

seamlessly. For any Ethereum blockchain transaction, gas fees (ETH) should be paid by the

transaction sender, including deposit-to-exchange transactions. To prevent users from having to

pay this network fee, the Asset-Share/dUSD token smart contracts have implemented a

‘transferDelegated’ function. This function is called by the exchange server with a user’s crypto

signature asserting that the user has delegated the Ethereum transaction (a token

transfer/deposit to the Exchange Vault contract) to the exchange server on behalf of the user. In

this manner, the exchange server pays the network transaction fees instead of the user, but only

on the user’s permission. In such cases, the server will charge the user a little portion of dUSD

from the token amount being deposited or dUSD already available on the user’s exchange

account as a deposit transaction fee. This feature is possible because YOSEMITE provides the

dUSD stable token system. With this, average users can use our Ethereum-based exchange

service seamlessly without having to purchasing any ETH from an external crypto exchange

service, and dUSD can be used to pay the blockchain gas fee.

7 ERC20 token standard - https://github.com/ethereum/eips/issues/20.
8 ERC223 is still in active discussion before final standardization. See here EIP - ERC223 token standard
- https://github.com/ethereum/EIPs/issues/223. The community commonly refers to ERC223 as ERC23.

8

https://github.com/ethereum/eips/issues/20
https://github.com/ethereum/EIPs/issues/223

1.5 Data Architecture of the YOSEMITE On/Off-Chain Hybrid System

1.5.1 Exchange Flow Data Structures

Figure 4 - Total order of exchange transactions on-chain and off-chain

All of the transactions in the exchange service should be serially ordered. The exchange system

can be viewed as a state-machine whose state is the set of exchange account balances (tradable

balances and in-trade/escrowed balances) for dUSD/Asset-Share tokens and open (unfilled)

buy/sell orders. Each transaction makes a state-transition from the current exchange system

state to the next.

δ : Sn ✕ T → Sn+1 where S : exchange state, T : input transaction, δ : state transition function

A total order of all exchange transactions is transparently and securely managed on the public

Ethereum blockchain and in IPFS storage through the exchange server. A complete list of

transaction types processed on the YOSEMITE exchange system are ‘Buy-Order’, ‘Sell-Order’,

‘Trade-Buy’, ‘Trade-Sell’, ‘Cancel-Buy-Order’, ‘Cancel-Sell-Order’, ‘Deposit’, ‘Withdrawal-Request’,

‘Cancel-Withdrawal-Request’, and ‘Withdrawal-Confirm’.

 - json keys of transaction messages

xa : exchange Ethereum smart contract address (Exchange Vault) identifying the exchange server
tt : transaction type (‘OB’ : Order Buy, ‘OS’ : Order Sell, ‘TB’ : Trade-Buy, ‘TS’ : Trade-Sell, ‘CB’ : Cancel-Buy,

‘CS’ : Cancel-Sell, ‘WR’ : Withdrawal-Request, ‘CWR’ : Cancel-Withdrawal-Request, ‘WC’ :
Withdrawal-Confirm)

ea : user’s Ethereum account address
sy : Asset-Share token symbol (id for an Asset-Share type) or ‘dUSD’
am : Asset-Share token amount or

dUSD amount (6 decimals big integer, 1 dUSD = 1000000, 30.5 dUSD = 30500000)
pr : dUSD price for 1 Asset-Share (6 decimals big integer)
mfr : maker fee rate (unit in percentage(0-100) multiplied by 100 (0(0%)-10000(100%), ex: 102 = 1.02%, 10 =

0.1%)
tfr : taker fee rate (same unit as ‘mfr’)

9

ts : client timestamp at which transaction message is made
si : crypto signature signed by the user’s Ethereum account for transaction message (stringified json object)
mea : Ethereum account address of the maker in a Trade transaction
tea : Ethereum account address of the taker in a Trade transaction
bI : buy-order id in a Trade transaction
sI : sell-order id in a Trade transaction
mf : maker fee dUSD amount in a Trade transaction (6 decimals big integer)
tf : taker fee dUSD amount in a Trade transaction (6 decimals big integer)
tsS : server timestamp when the transaction message is made on exchange server
siS : crypto signature signed by the exchange server’s Ethereum account for a transaction message
txF : transaction fee dUSD amount in a Withdrawal-Request transaction (6 decimals big integer)
wrI : withdrawal-request id in a Cancel-Withdrawal-Request or Withdrawal-Confirm transaction
wsI : withdrawal-settlement-data file hash id

● Buy-Order : An exchange user makes a buy-order message (a stringified json object)

and cryptographically signs this message. The signed buy-order message is sent to the

exchange server and published to IPFS storage.

signedBuyOrderMsg = buyOrderMsg + (“si” → ECDSA.Sign(PKU ,buyOrderMsg))
where PKU is the private key of the user account, ECDSA.Sign is signing function of the elliptic curve digital signature algorithm,

buyOrderMsg/signedBuyOrderMsg are tightly packed (no whitespace) stringified json objects

buyOrderId = MerkleRootHash(signedBuyOrderMsg) = IPFS file address
where MerkleRootHash is a base58 encoded root hash of merkle tree/dag of file data on IPFS 9

signedBuyOrderMsg = IPFS.Get(buyOrderId)
where IPFS.Get is a file data retrieving function using the merkle root hash address of a file on IPFS

UserEthAddress = ECDSA.Recover(buyOrderMsg, signedBuyOrderMsg("si"))
where ECDSA.Recover is public key recovering function of the elliptic curve digital signature algorithm,

buyOrderMsg = signedBuyOrderMsg -"si"

 [buy-order message examples]

buyOrderMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "OB", "ea" : "0x38909c7...d7b25e0590" , "sy" :
"AS_PC_GN", "am" : "30", "pr" : "30500000", "mfr" : 10, "tfr" : 20, "ts" : 1500882556820 }

signedBuyOrderMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "OB", "ea" : "0x38909c7...d7b25e0590" , "sy" :
"AS_PC_GN", "am" : "30", "pr" : "30500000", "mfr" : 10, "tfr" : 20, "ts" : 1500882556820, "si" :
"0xdfef1901548ec804ecfa...72a5c8909d7961c1c" }

buyOrderId = “QmQjxtDWvHVMVp...9Y3r5g5QP2nX6Kev”
signedBuyOrderMsg = IPFS.Get(“QmQjxtDWvHVMVp...9Y3r5g5QP2nX6Kev”)

“0x38909c7...d7b25e0590” = ECDSA.Recover(buyOrderMsg,”0xdfef1901548ec804ecfa...72a5c8909d7961c1c”)

9 For merkle tree explanation , see https://en.wikipedia.org/wiki/Merkle_tree.

10

https://en.wikipedia.org/wiki/Merkle_tree

● Sell-Order : An exchange user makes a sell-order message and cryptographically signs this

message. The signed sell-order message is sent to the exchange server and published to IPFS

storage.

 signedSellOrderMsg = sellOrderMsg + (“si” → ECDSA.Sign(PKU ,sellOrderMsg))

sellOrderId = MerkleRootHash(signedSellOrderMsg) = IPFS file address
signedSellOrderMsg = IPFS.Get(sellOrderId)

UserEthAddress = ECDSA.Recover(sellOrderMsg, signedSellOrderMsg("si"))

 [sell-order message examples]

sellOrderMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "OS", "ea":"0x38909c7...d7b25e0590", "sy" :
"AS_PC_GN", "am" : "80", "pr" : "28750000", "mfr" : 10, "tfr" : 20, "ts" : 1500882742634 }

signedSellOrderMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "OS", "ea":"0x38909c7...d7b25e0590", "sy" :
"AS_PC_GN", "am" : "80", "pr" : "28750000", "mfr" : 10, "tfr" : 20, "ts" : 1500882742634, "si" :
"0x4c45a4c457a5d12645...ccc1ef8147dfe5ddb1b" }

sellOrderId = “QmeUwJTsG...vJJonet9hSfT”
signedSellOrderMsg = IPFS.Get(“QmeUwJTsG...vJJonet9hSfT”)

“0x38909c7...d7b25e0590” = ECDSA.Recover(sellOrderMsg,”0x4c45a4c457a5d12645...ccc1ef8147dfe5ddb1b”)

● Trade-Buy / Trade-Sell : The exchange server matches buy-order and sell-order messages

submitted by users, then makes trade-buy or trade-sell messages accordingly. A trade-buy

message is made when a taker buys tokens from a sell-order maker. A trade-sell message is

made when a taker sells tokens to a buy-order maker. The exchange server cryptographically

signs the trade message and publishes the signed trade transaction message to IPFS storage.

 signedTradeMsg = tradeMsg + (“siS” → ECDSA.Sign(PKEX ,tradeMsg))
where PKEX is private key of exchange server Ethereum account

tradeId = MerkleRootHash(signedTradeMsg) = IPFS file address
signedTradeMsg = IPFS.Get(tradeId)

ExchangeServerEthAddress =ECDSA.Recover(tradeMsg, signedTradeMsg("siS"))

 [trade-buy message examples]

tradeMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "TB", "mea" : "0xccd78c364ca...9c3252cb4", "tea" :
"0x38909c7...d7b25e0590", "bI" : "QmQevjMCw66E...9uGyBnh17p", "sI" : "QmPYyQsve...1osuWYJQ", "sy" :
"AS_PC_GN", "am" : "15", "pr" : "31800000", "mf" : "477000", "tf" : "954000", "tsS" : 1500882596513 }

signedTradeMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "TB", "mea" : "0xccd78c364ca...9c3252cb4", "tea" :
"0x38909c7...d7b25e0590", "bI" : "QmQevjMCw66E...9uGyBnh17p", "sI" : "QmPYyQsve...1osuWYJQ", "sy" :
"AS_PC_GN", "am" : "15", "pr" : "31800000", "mf" : "477000", "tf" : "954000", "tsS" : 1500882596513, "siS" :
"0x61f56e248cae719bd...aa3177248a01ac4a1c" }

11

tradeId = “QmUQmgiRD...sSwzq8S4qw”
signedTradeMsg = IPFS.Get(“QmUQmgiRD...sSwzq8S4qw”)

“0x5677e2388...ee9dcaa6” = ECDSA.Recover(tradeMsg,”0x61f56e248cae719bd...aa3177248a01ac4a1c”)

● Cancel-Buy-Order / Cancel-Sell-Order : An exchange user can cancel his/her own

open(unfilled) buy/sell order by creating and cryptographically signing a

cancel-buy/sell-order message. The signed message is sent to the exchange server and

published to IPFS storage.

 signedCancelOrderMsg = cancelOrderMsg + (“si” → ECDSA.Sign(PKU,cancelOrderMsg))

cancelOrderId = MerkleRootHash(signedCancelOrderMsg) = IPFS file address
signedCancelOrderMsg = IPFS.Get(cancelOrderId)

UserEthAddress =ECDSA.Recover(cancelOrderMsg, signedCancelOrderMsg("si"))

 [cancel-buy-order message examples]

cancelOrderMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "CB", "ea" : "0x38909c7...d7b25e0590", "sy" :
"AS_PC_GN", "bI" : "QmP48eKQ...YAroA846N", "ts" : 1500882760269 }

signedCancelOrderMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "CB", "ea" : "0x38909c7...d7b25e0590", "sy" :
"AS_PC_GN", "bI" : "QmP48eKQ...YAroA846N", "ts" : 1500882760269, "si":"0xb19dafeaf91...a9a85a8a91c" }

cancelOrderId = “QmSSEDAc...LZt9oEcRLNF”
signedCancelOrderMsg = IPFS.Get(“QmSSEDAc...LZt9oEcRLNF”)

“0x38909c7...d7b25e0590” = ECDSA.Recover(cancelOrderMsg,”0xb19dafeaf91...a9a85a8a91c”)

● Deposit : An exchange user transfers ownership of the user’s dUSD/Asset-Share tokens to

the Exchange Vault smart contract by executing an Ethereum blockchain transaction on the

dUSD/Asset-Share smart contract. A delegated ‘Deposit’ blockchain transaction can be made

by the exchange server on behalf of the user using the ‘transferDelegated’ function of

dUSD/Asset-Share contract, thereby consuming the server’s ETH but charging a transaction

fee in dUSD to the user. For each token transfer, the Exchange Vault smart contract

generates a ‘Deposit’ Ethereum log event so the exchange server can monitor all deposit

transactions. The Ethereum transaction hash is sufficient for data security and transparency

of a deposit because an Ethereum transaction cannot occur without the user’s

crypto-signature and because all blockchain transaction records are immutable public data.

The transaction receipt containing ‘Deposit’ log data can be retrieved through the standard

Ethereum API interface. Since everything is executed and recorded on the blockchain,

additional signing and IPFS publishing for deposit messages are not necessary.

Ethereum.getTransactionReceipt(depositEthereumTransactionHash)

 [deposit transaction hash / Deposit Exchange Vault smart contract log example]

12

{ "address" : "0x33e50109...119cba0a088", "blockNumber" : 591404, "transactionHash" :
"0xa83808838c798a9...37a92a6ec4d75ec2", "blockHash" : "0x4080637f189e90b...61e07677d033957d",
"event" : "Deposit", "args" : { "_from" : "0x38909c7...d7b25e0590", "_symbol" : "DUSD", "_value" :
"3000000000000000000000" }, … }

● Withdrawal-Request : An exchange user can request a withdrawal of dUSD/Asset-Share

tokens from the Exchange Vault smart contract to the user’s Ethereum account on the public

blockchain. The user specifies the amount of dUSD, or amount of specific Asset-Share

tokens, to be withdrawn as well as the withdrawal transaction fee amount acceptable

(calculated in dUSD) by the exchange server. After a withdrawal request is accepted by

exchange server, the user’s exchange account is locked and an account balance settlement

procedure between the user and the exchange server is executed. The user’s

withdrawal-request message is signed and stored in IPFS similarly to other transaction

messages.

signedWithdrawalReqMsg = withdrawalReqMsg + (“si” → ECDSA.Sign(PKU ,withdrawalReqMsg))

withdrawalReqId = MerkleRootHash(signedWithdrawalReqMsg) = IPFS file address
signedWithdrawalReqMsg = IPFS.Get(withdrawalReqId)

UserEthAddress =ECDSA.Recover(withdrawalReqMsg, signedWithdrawalReqMsg("si"))

 [withdrawal-request message examples]

withdrawalReqMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "WR", "ea" : "0x38909c7...d7b25e0590", "sy" :
"dUSD", "am" : "5000000000", "txF" : "500000", "ts" : 1500882917498 }

signedWithdrawalReqMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "WR", "ea" : "0x38909c7...d7b25e0590",
"sy" : "dUSD", "am" : "5000000000", "txF" : "500000", "ts" : 1500882917498, "si" : "0xc0cfe019db...52a7d11b"
}

withdrawalReqId = “QmPim5DrZ9Zo...q3PyyDvLmd3”
signedWithdrawalReqMsg = IPFS.Get(“QmPim5DrZ9Zo...q3PyyDvLmd3”)

“0x38909c7...d7b25e0590” = ECDSA.Recover(withdrawalReqMsg,”0xc0cfe019db...52a7d11b”)

● Cancel-Withdrawal-Request : An exchange user can cancel a withdrawal-request before

the account balance settlement procedure has completed. If the user cancels, the user’s

exchange account is unlocked. The user’s cancel-withdrawal-request message is signed and

stored in IPFS similarly to other transaction messages.

signedCancelWdReqMsg = cancelWdReqMsg + (“si” → ECDSA.Sign(PKU ,cancelWdReqMsg))

cancelWdReqId = MerkleRootHash(signedCancelWdReqMsg) = IPFS file address
signedCancelWdReqMsg = IPFS.Get(cancelWdReqId)

UserEthAddress =ECDSA.Recover(cancelWdReqMsg, signedCancelWdReqMsg("si"))

13

 [withdrawal-request message examples]
cancelWdReqMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "CWR", "ea" : "0x38909c7...d7b25e0590", "wrI" :
"QmPim5DrZ9Zo...q3PyyDvLmd3", "ts" : 1501040519725 }

signedCancelWdReqMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "CWR", "ea" : "0x38909c7...d7b25e0590",
"wrI" : "QmPim5DrZ9Zo...q3PyyDvLmd3", "ts" : 1501040519725, "si" : "0x0880eff7f3a00c...c5233d79831c" }

cancelWdReqId = “QmPHji7WQHW...UsGBMbKu3hv6F9”
signedCancelWdReqMsg = IPFS.Get(“QmPHji7WQHW...UsGBMbKu3hv6F9”)

“0x38909c7...d7b25e0590” = ECDSA.Recover(cancelWdReqMsg,”0x0880eff7f3a00c...c5233d79831c”)

● Withdrawal : After a user’s withdrawal-request has been submitted before the actual

Ethereum blockchain transaction for dUSD/Asset-Share token withdrawal, an Account

Balance Settlement procedure is performed between the exchange server and the user to

agree and confirm the user’s current token balances on the exchange. Upon a user’s

withdrawal-request, the exchange server proposes a settlement data file stored on IPFS to

the user. The settlement data contains:

- withdrawal request data

* token type (dUSD/Asset-Share token symbol), amount, transaction fee, withdrawal

request id

- current account balances in exchange

* tradable / in-trade (escrowed for open orders) dUSD balances

* tradable / in-trade (escrowed for open orders) Asset-Share token balances for each

Asset-Share token the user owns

- the user’s current open (unfilled) buy/sell orders in the exchange

- all of the user’s exchange/blockchain transactions since last account balance settlement

- previous account balances at the last account balance settlement

- the last account balance settlement data IPFS file address and previous Withdrawal

Ethereum blockchain transaction hash

- the exchange server’s crypto signature for the current settlement data

On the server side, settlement data is first verified before sending it to the client. On the

client side, by using the predefined account balance verification algorithm/procedure

published by YOSEMITE which can be re-implemented by any 3rd party, current account

balance values can be computed exactly from the received settlement data. Though

settlement data is assembled and provided by the exchange server, all information in the

settlement data can be validated via cryptographic proof on the Ethereum blockchain and

IPFS storage without any reference to the exchange server. All exchange transaction data is

chained together cryptographically through crypto-hash and crypto-signatures. Thus, the

exchange server cannot manipulate settlement data to forge the user’s account balance

records.

Starting from the previous account balance values that have already been validated and

settled, the client side application (or any 3rd party verifier) can compute the exact current

14

account balance values by sequentially applying the account balance state transition function

for each transaction related to the user’s account on the settlement data.

ABi = δ(ABi-1 , Ti)
where Ti : i-th transaction related to the user, ABi : user's account balance state after applying transaction Ti ,

δ : account balance state transition function

given input { ABp , Tp+1 , Tp+2 , ... , Tp+n },
ABc = δ(δ(… δ(ABp , Tp+1), …), Tp+n)

where ABp : account balance state at previous settlement, ABc : current account balance state on withdrawal request ,
n : number of transactions related to the user since the previous settlement until the current settlement

Figure 5 - Account Balance Settlement procedure before a Withdrawal Blockchain Transaction

If the user successfully verifies the settlement data and agrees on the final account balances,

then the user makes a withdrawal-confirm message including their crypto-signature for the

settlement data and submits the message to the exchange server. Only after the user also

verifies and confirms the settlement data, will an actual ‘Withdrawal’ blockchain transaction

be executed on the Exchange Vault Ethereum smart contract by the exchange server. The

Exchange Vault smart contract code also checks the validity of the user’s crypto signature for

the withdrawal settlement data.

signedSettlementDataJson = settlementDataJson + (“siS” → ECDSA.Sign(PKEX , settlementDataJson))

settlementDataHash = MerkleRootHash(signedSettlementDataJson) = IPFS file address
signedSettlementDataJson = IPFS.Get(settlementDataHash)

15

ExchangeServerEthAddress =ECDSA.Recover(settlementDataJson, signedSettlementDataJson("siS"))

signedWithdrawalConfirmMsg = [... ,"wsI"→settlementDataHash,"si"→ECDSA.Sign(PKU , settlementDataHash)]

withdrawalId = MerkleRootHash(signedWithdrawalConfirmMsg) = IPFS file address
signedWithdrawalConfirmMsg = IPFS.Get(withdrawalId)

UserEthAddress =ECDSA.Recover(settlementDataHash, signedCancelWdReqMsg("si"))

⇒ Exchange Vault smart contract code also verifies this on Withdrawal blockchain transaction

[settlement data json file example]
{ "xa":"0x33e50109...119cba0a088", "doc":"WS", "tsS":1501040540125, "ea":"0x38909c7...d7b25e0590",
"sy":"dUSD",
"am":"7000000000", "txF":"500000", "wrI":"QmReLCpLfk...6ySFSaTgR", "cTxS":486,
"cAB":{ "a":"3820893603300", "aE":"617266876000", "ATs":[{ "s":"AS_DH_LG", "t":"12300", "tE":"0",

"aE":"106065960000"}, { "s":"AS_PC_GN", "t":"3655", "tE":"0", "aE":"416428012000" }, …],
"OOs":[{ "Xt":"OB", "Xsy":"AS_DH_LG", "Xp":"35320000", "Xta":"3000",

"Oi":"QmSDB51B3h...SWVqFbCZ", "OmF":10, "OtF":20, "Ouf":"3000" }, { "Xt":"OB",
"Xsy":"AS_PC_GN", "Xp":"27200000", "Xta":"120", "Oi":"Qmdg683...YxEJmp1", "OmF":10, "OtF":20,
"Ouf":"120" }, …]},

"TXs":[{ "Xt":"W", "Xs":468, "Xsy":"dUSD", "Xts":1500858270444, "Xta":"2000000000",
"Wi":"QmS8FQpMo...Ln2hQGuYnc", "WsI":"QmYDDEQQk...MJt1JFgxG1k", "WtxF":"500000",
"Wts":1500858234097, "Wsi":"0xb26bdbb...e81041251b", "WtxH":"0xbc7ed959ace...2211e813e1a71b" },
{ "Xt":"D", "Xs":472, "Xsy":"dUSD", "Xts":1500882510417, "Xta":"2999800000", "Di":"0xa8380...d75ec2" },
…,
{ "Xt":"OB", "Xs":477, "Xsy":"AS_PC_GN", "Xts":1500882596513, "Xp":"31800000", "Xta":"15",
"Oi":"QmQevjM...9uGyBnh17p", "OmF":10, "OtF":20, "Ots":1500882593820,
"Osi":"0x6a3187662ac...e1866489d81c"},
{ "Xt":"T", "Xs":478, "Xsy":"AS_PC_GN", "Xts":1500882596513, "Xp":"31800000", "Xta":"15",
"Ti":"QmUQmgiR...Swzq8S4qw", "TbI":"QmQevjMCw...X9uGyBnh17p", "TsI":"QmPYyQsve...a1osuWYJQ",
"Tty":"B", "Tmt":"T", "Tf":"954000" }, ...],

"pTxS":466,
"pAB":{ "a":"3816836281300", "aE":"618511112000", "ATs":[{ "s":"AS_DH_LG", "t":"12300", "tE":"0",

"aE":"106065960000"}, { "s":"AS_PC_GN", "t":"3630", "tE":"90", "aE":"417672248000" }, …],
"OOs":[{ "Xt":"OB", "Xsy":"AS_DH_LG", "Xp":"35320000", "Xta":"3000", "Oi":"QmSDB51...VqFbCZ",

"OmF":10, "OtF":20, "Ouf":"3000" }, { "Xt":"OB", "Xsy":"AS_PC_GN", "Xp":"27200000", "Xta":"120",
"Oi":"Qmdg6837...bYxEJmp1", "OmF":10, "OtF":20, "Ouf":"120" }, ...] },

"pSI":"QmYDDEQQkCE...MJt1JFgxG1k",
"pWtxH":"0x082ead4bc29...69e49a24429"
"siS":"0xa7a2f2d65e42...2c0ea73f1b1b" }

(cTxs: current transaction sequence, cAB: current account balances, a: dUSD balance, aE: dUSD escrowed, ATs:
Asset-Share tokens, s: symbol, t: token amount, tE: token escrowed, OOs: open orders, TXs: transactions, Xt:
transaction type, Xs: transaction sequence, Xts: transaction server timestamp, Xsy: transaction token symbol,
Xp: transaction price, Xta: transaction token amount, Oi: order id, OmF: order maker fee rate, OtF: order taker fee
rate, Ouf: order unfilled amount, Ots: order client timestamp, Osi: order user signature, Wi: withdrawal id, WsI:
withdrawal settlement id, WtxF, withdrawal transaction fee, Wts: withdrawal client timestamp, Wsi: withdrawal
user signature, WtxH: withdrawal ethereum transaction hash, Di: deposit id (ethereum transaction hash), Ti: trade

16

id, TbI: trande buy order id, TsI: trade sell order id, Tty: trade type, Tmt: trade maker or taker, Tf: transaction fee,
pTxS: previous settlement transaction sequence, pAB: previous settlement account balances, pSI : previous
settlement hash id, pWtxH: previous withdrawal ethereum transaction hash)

settlementDataHash = "QmZunhbJXVc...e9F9LaoqXvUtcy"

[withdrawal-request message examples]
withdrawalConfirmMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "WC", "ea" : "0x38909c7...d7b25e0590", "sy"
: "dUSD", "am" : "7000000000", "txF" : "500000", "wrI" : "QmReLCpLfkZjV...p6ySFSaTgR", "wrTs" :
1501040537947, "wsI" : "QmZunhbJXVc...e9F9LaoqXvUtcy", "ts" : 1501058354631 }

signedWithdrawalConfirmMsg = { "xa" : "0x33e50109...119cba0a088", "tt" : "WC", "ea" :
"0x38909c7...d7b25e0590", "sy" : "dUSD", "am" : "7000000000", "txF" : "500000", "wrI" :
"QmReLCpLfkZjV...p6ySFSaTgR", "wrTs" : 1501040537947, "wsI" : "QmZunhbJXVc...e9F9LaoqXvUtcy", "ts" :
1501058354631, "si" : "0xbf8596b...770869dad1c" }

withdrawalId = “QmV17EEgtg...VMbRr67rFi8”
signedWithdrawalConfirmMsg = IPFS.Get(“QmV17EEgtg...VMbRr67rFi8”)

“0x38909c7...d7b25e0590” = ECDSA.Recover("QmZunhbJXVc...e9F9LaoqXvUtcy",”0xbf8596b...770869dad1c”)

1.5.2 Off-chain Blockchain-like Data Structures with Blockchain Anchoring

Figure 6 - Off-chain blockchain-like exchange data structure anchored to the public blockchain

To ensure immutability and transparency of all exchange data, all total-ordered exchange

transactions are “block-chained” or “file-chained” through IPFS files linked to the each

17

previous one by hash-links. Those files are published regularly via public Ethereum

blockchain, so called blockchain anchoring.

Exchange transactions are grouped together at regular time intervals as a ‘Block json file’

stored on IPFS. A Block json file contains i) a sequence of transaction message hashes (IPFS

file addresses) pointing to each transaction message file immutably stored on IPFS and ii)
10

the previous file’s IPFS address creating a chain of Blocks. Some IPFS addresses is

anchored(or published) on the Exchange Vault smart contract regularly.

This structure is very similar to the one of Bitcoin and Ethereum. Once a Block json file’s hash

is anchored to the public blockchain, all exchange data of the current Block along with all

previous Blocks becomes provably immutable. With this structure, the total history of

exchange transactions can be reconstructed from the public Ethereum blockchain data and

public IPFS storage by any 3rd party without any reference to the exchange server.

[Block json file example]
{"prev":"QmZpsfnAch3FPQJKzqVjhsWSErzxLCQMniqSDkQqKyHevZ","txList":[{"ty":"OB","addr":"QmZ8cck7
ETbFNScbjKrmC7GnsZrAHLVvAtksHb7CP3HGsz"},{"ty":"OS","addr":"QmWNKUTtwy2sbq88WV5eJuN7zeUt56o
FgjkLU4EMjmFHB1"},{"ty":"T","addr":"QmRPFx9w3rCQJDS5o255Y3SjtZ7LZhjG3kGM8vGQ7hGv7z"},{"ty":"D","e
a":"0x99ca2a286099f813fa3bb970e34cdaf099337242","sy":"dUSD","am":100000000000,"di":"0xd0ae34bf4968c4
972d01fea2462ff2c519bb7fbeec4fd04af01a520bc439fda5"},{"ty":"D","ea":"0x053309e65b33b384f64a6dad7ecef6
750e07acfc","sy":"ASD","am":1000000000,"di":"90beff59-d60c-4a14-90ea-d253d67bb657"}, …]}

 (prev: the IPFS address of the previous Block json file, txList: the list of total-ordered transactions)

1.6 Strictly Safer than Centralized Architecture

To understand why we place such faith in the hybrid architecture, it makes sense to consider

the types of hacks that could be attempted on the centralized server. First, we must clarify that

the hybrid architecture is not susceptible to the most prevalent attack on centralized

architectures over the last few years, database destruction or exposure. Any data stored in our

databases, if destroyed, could be easily regenerated following the immutable IPFS audit trail

created during trading. Furthermore, our centralized server stores no private user

information, so gaining access to our databases would not expose any data other than what is

already stored publically in IPFS.

The only hacks of interest are restricted to undermining the execution of the centralized

server. The simplest hack of this nature would pertain to crashing the centralized server. In

this case, the state of the exchange could be reconstructed from the IPFS audit chain with

minimal event. For the exchange server to be more secure and highly available, a failover

system can be implemented where a standby secondary matching engine server follows in

lockstep with the primary centralized matching engine server.

10 With the exception that for deposits only the Ethereum transaction hash is written to the Block file.

18

A more advanced hack of this nature would pertain to compromising the centralized server to

steal the private key of the exchange server’s Ethereum account. In this case, the malicious

hacker would be able to sign arbitrary withdrawal requests and assets could be stolen from the

Exchange Vault contract as a hacker would possess the ability to sign invalid requests and

commit them to the public blockchain. While this is a significant risk and something not

applicable to a decentralized architecture, the probability of executing such an attack is outside

the reasonable realm of possibility and a vulnerability of all centralized architectures. Practice

would indicate this threat is accepted as “reasonable and preventable” by most security experts

as all banks, credit card systems, and healthcare systems share the same vulnerability.

However, the ability of the hybrid architecture to make database hacking irrelevant makes it

strictly conceptually more secure than a traditional centralized architecture.

A Reasonable Compromise: Simple Tokens and Powerful Servers

In proposing this architecture, the YOSEMITE team expects to receive criticism for relying on

an architecture that sacrifices consensus for speed and throughput. While this is common

practice in industry for financial services companies, the cryptocurrency community holds

crypto startups to a higher standard as they operate without any significant regulatory

oversight and rogue crypto transactions cannot be reversed after a glitch unlike in the

multistep public exchange settlement process used in the United States . While the DAO hack
11

forced an Ethereum hard fork , it is inadvisable to rely on the community to solve future
12

problems by performing the same costly action. As discussed previously, implementing an

exchange,that runs entirely on the public blockchain remedies these security issues but

requires a reconstruction of market dynamics to accommodate significantly slower orders and

non-zero cost orderflow. The YOSEMITE team does not believe this is an acceptable solution.

More generally, the complex nature of smart contracts has shown the security risk of building

complex logic directly into the contract layer time and time again. As adoption of blockchain

grows, the implications of smart contract exploits will only grow more severe. Our architecture

allows the abstraction of all complicated logic to the server level meaning simple compliance

with ERC20/ERC223 is all that is often required on the contract layer, when generalizing our

architecture to other applications that benefit from the notion of a token.

The YOSEMITE team is currently researching additional solutions to augment the centralized

exchange server in our architecture to prevent a rogue actor attack by distributing trust across

many independent nodes to confirm withdrawal of assets from the exchange vault contract.

However, most alternative solutions currently have a degree of security and usability that we

believe to be inferior or equal to our hybrid architecture both from a technical perspective and

an incentive perspective. Apart from suggesting the use of a pure delegated proof-of-stake

11 SPY Flash Crashes: NYSE Cancels $500 Million Worth Of Trades,
http://www.zerohedge.com/article/spy-flash-crashes-nyse-cancels-500-million-worth-trades
12 Ethereum Executes Blockchain Hard Fork to Return DAO Funds,
https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/

19

http://www.zerohedge.com/article/spy-flash-crashes-nyse-cancels-500-million-worth-trades
https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/

(dPOS) service that achieves higher throughput and lower latency for the off-chain

transactions, a potential suggestion to our architecture could be requiring an additional

signature on withdrawals from a delegated proof-of-stake system that provides low latency,

high throughput, and decentralized consensus on correct exchange execution. However, major

developers of this type of technology still warn of significant development hurdles in resiliency

and security before they believe it to be production-ready. For example, a popular dPOS

solution, EOS, states (as of 10/13): “This code is currently alpha-quality and under rapid

development.” Tendermint, a common alternative to EOS, also states (as of 10/13): “NOTE:
13

This is alpha software.“ During the interim, we believe significant utility can be derived
14

using the tokenization function of the Ethereum blockchain, and our hybrid architecture offers

the best solution to allow trading of said tokens until other consensus algorithms mature.

1.7 Initial Asset-Share Token Distribution System (for Asset

Public Offerings - APOs)

[Figure.7] Initial Asset-Share Token Distribution System

When an asset is being listed on YOSEMITE exchange , available Asset-Share tokens will be

15

initially distributed to any user accounts that have sent a share subscription request message

indicating the user wants to buy a certain amount of Asset-Share tokens and escrowing a

corresponding amount of dUSD for the initial offering. If a user does not have enough dUSD in

13 The EOS github repository, https://github.com/EOSIO/eos
14 The Tendermint github repository, https://github.com/tendermint/tendermint
15 This listing process is referred to as an Asset Public Offering or APO; see the YOSEMITE Asset
Exchange Service Overview.

20

https://github.com/EOSIO/eos
https://github.com/tendermint/tendermint

the exchange, that user needs to first deposit an appropriate amount of dUSD to the Exchange

Vault smart contract. Each subscription request message is crypto-signed by a user’s Ethereum

account. Immediately after the end of the initial share subscription period, the exchange server

executes transactions on the Asset-Share Ethereum smart contract to claim/write the finalized

initial token distribution. These transactions include the user’s signature and proof data for their

current dUSD exchange balance published on IPFS storage. The accumulated dUSD funds are

withdrawable by the asset listing account. As with the trading system, the end user does not

need to have any ETH for gas fees to participate in initial offerings.

For the case of oversubscription , a fair and transparent random distribution of Asset-Share
16

tokens among the subscribed user accounts is implemented. The seed random number is fetched

from the public Ethereum blockchain (the block-hash of the Ethereum block data at

subscription end time) and is used to generate a sequence of random numbers to decide

deterministically the winning accounts and allotted amount of shares. The timestamp-ordered

list of requested subscription messages signed by users, seed random number from the

blockchain, the pseudo-random number generation method, and the final result of allotted

shares among user accounts are all published to IPFS. The IPFS hash address for the file

containing all relevant data is then written to the Asset-Share Ethereum smart contract, so the

initial token distribution process is verifiable/auditable as provably-fair by any external party.

1.8 Asset Acquisition and Shareholder Voting System

16 Oversubscription occurs when the amount of shares available for initial public distribution < requested
share amount by subscribers.

21

Figure 8 - Asset Acquisition and Voting System

An asset (real estate, art, …) listed on YOSEMITE exchange can be purchased in its entirety and

subsequently delisted from YOSEMITE exchange. To do this, the interested asset buyer
17

proposes an asset acquisition by transferring dUSD funds as escrow to the Asset-Share

Ethereum smart contract equal to the proposed acquisition price. A buyer’s proposed bid price

must be higher than the current total market cap of the asset being traded in exchange. If the

exchange server perceives a valid acquisition proposal from the blockchain, the acquisition

proposal event is announced to every shareholder through registered user email or the push

notification system of the client application. Then every shareholder account can cast a vote to

either accept or reject the proposed bid price within the voting period. Each shareholder makes

a voting message crypto-signed with their Ethereum account. The signed messages are sent to

the exchange server and published on IPFS storage as proof data of that user’s vote. Before the

voting period ends, any other prospective buyer can overbid the current proposed acquisition

price with additional premium price. If an overbidding event occurs, the previous vote is

cancelled and a new voting period is started for the new proposal. Just after the final voting

period end time, the exchange server tallies up the voting results and makes them public on the

Asset-Share token smart contract with the IPFS hash address for the file containing a list of links

pointing to all of the submitted user-signed voting messages stored immutably on IPFS. If the

proposed acquisition is accepted by a successful vote, every shareholder can withdraw a portion

of the whole acquisition price in proportion to the each user’s own Asset-Share token amount

from the Asset-Share Ethereum smart contract. Finally, the sold asset is delisted from the

exchange.

2 Digital USD - dUSD

2.1 dUSD Overview

The dUSD token is an Ethereum standard token compatible with ERC20 and ERC223.

Acquiring Ether (ETH) can be a burdensome task, and transacting with ETH can introduce a

significant amount of volatility risk. Therefore, rather than transacting directly in Ether, we have

introduced a fiat-pegged token named Digital USD (dUSD) which will act as the primary trading

currency on the YOSEMITE Hybrid token exchange platform.

Taking inspiration from the Tether model, we are bringing the same pegging process to

Ethereum, where 1 dUSD is created only when users deposit 1 USD worth of assets and is

destroyed when users redeem it for USD. Additionally, the dUSD system not only supports the

purchase of dUSD with USD, but also ETH, which is sold for fiat in 3rd party crypto-exchanges

at current market price. This one-to-one structure ensures the amount of dUSD in circulation is

17 For a detailed description of the asset acquisition process, see the YOSEMITE Asset Exchange
Service Overview.

22

less than or equal to the USD held in a reserve bank account of the dUSD system. USD balances

held in the reserve bank account are regularly published and audited, and the total supply

amount of dUSD tokens is public information on the Ethereum blockchain. This mechanism

prevents the dUSD system from arbitrarily issuing or destroying dUSD tokens by holding it

publicly accountable.

2.2 dUSD System Architecture

Figure 9 - dUSD action flow and system architecture

2.2.1 Issuing dUSD

● Issuance from USD via Credit Card/Wire Transfer

When a user pays an amount of USD with a credit card or via wire transfer, an equal

amount of dUSD tokens are issued to that user’s Ethereum account. During this

issuance, a payment transaction receipt from the external payment processor or financial

institution is also provided. A hash address of the IPFS file containing this receipt data is

recorded on the blockchain as proof data when the dUSD system executes an “issuance”

Ethereum transaction.

● dUSD Issuance from ETH

23

When a user sends an amount of ETH to the dUSD token smart contract, the

corresponding amount of dUSD is issued to that user’s Ethereum account at the current

ETH/USD market rate. In this process, the dUSD server system collects the average

market ETH/USD price and available volume information from 3rd party

crypto-exchanges in a transparent manner and posts this data to the user’s client

interface.

To issue dUSD with ETH, a user first makes a request to the server with the price and

available volume data they would like to consume with their transaction. The server

verifies the user’s Ethereum address, price, and volume data of the request. After

verification, the server cryptographically signs the request data and sends the

crypto-signed data back to the user. The user then sends this server signed data with the

appropriate amount of ETH to the dUSD token smart contract. Once the smart contract

verifies all of the signed data (and accompanying ETH amount), dUSD is issued to the

user’s Ethereum address in the quoted amount. Any ETH collected from a dUSD issuance

will be directly sold for USD at current market prices. The converted USD funds will be

forwarded to the dUSD reserve bank account.

2.2.2 Redeeming dUSD

● Redeeming dUSD with USD via wire transfer

Only users who have provided the proper bank account and KYC/AML compliance

information can redeem dUSD for USD. When a user requests a dUSD redemption for

USD, the redemption amount of dUSD is subtracted from the user’s Ethereum account

balance and destroyed on the dUSD token smart contract. Afterwards the corresponding

amount of USD (minus any transaction fees) is sent to the user’s provided bank account.

● Redeeming dUSD with ETH

The dUSD server posts the price and available redemption volume data for ETH/dUSD

based on real-time ETH/USD market data. A user interested in redeeming dUSD with

ETH can make a crypto-signed request containing the price and volume values for

redemption to the dUSD servers to make a “redeemDelegated” call on the user’s behalf.

After verification of the user’s signed request message, the dUSD server executes the

“redeemDelegated” function on the dUSD token smart contract with the user’s signature.

The contract will adjust the user’s dUSD balance, and destroy the redeemed dUSD. With

the “redeemDelegated” method, users do not need to pay Ethereum gas fees in ETH

directly; instead the dUSD server pays the gas fees and charges the user a corresponding

amount of dUSD which is taken from the redeeming amount. When this transaction is

confirmed, the dUSD servers will directly sell an equal amount of USD for ETH on a

partnering crypto-exchange, then the acquired amount of ETH is sent to the user’s

Ethereum account.

24

Alternatively, users who are already holding ETH can choose to make a direct smart

contract transaction rather than using “redeemDelegated”. In such cases the flow will be

very similar to “dUSD Issuance from ETH” flow in section 2.2.1.

2.2.3 Transferring dUSD

Since dUSD is compliant with ERC20 and ERC223, it can be freely transferred to any Ethereum

account (user or contract) in a safe manner. With the ERC223 interface, the dUSD token

provides "transfer to smart contract" in a safe and efficient manner. This includes deposits to

the Exchange Vault smart contract in the YOSEMITE exchange system. Since the dUSD token is

an ERC standardized token and a fiat stable coin, it can be used in any Ethereum based

decentralized application (Dapp).

2.3 Proof of Reserves Process

The dUSD system’s reserve management process can be represented by the following equation:

dUSD
RESERVE-BACKED ≤ USD

BANK-RESERVE + USD
CRYPTO-EXCHANGE

where dUSD
RESERVE-BACKED : the total amount of dUSD issued via wire transfer/credit card/ETH ,

USD
BANK-RESERVE : the total amount of USD in dUSD reserve bank account ,

USD
CRYPTO-EXCHANGE : the aggregate amount of USD held in dUSD crypto-exchange accounts

At any given time, the total Digital USD in circulation on the Ethereum blockchain is backed by

an equivalent amount (or greater) of reserve US dollars in the dUSD bank account and

crypto-exchange accounts (used in the issuing and redeeming of dUSD with ETH).

The total number of dUSD in circulation is contained in a publicly viewable storage variable on

the dUSD token smart contract. This amount represents the current total supply of dUSD and is

updated whenever the issue and redeem functions are executed on the dUSD token smart

contract.

To ensure transparency in this reserve process, the above balances are published openly on a

regular basis. Additionally, independent third party auditors will regularly verify, sign, and

publish the underlying bank balance and statement of financial transactions for the reserve

account holding funds. Similarly, third party auditors will perform the same auditing process on

the crypto-exchange transaction information for all dUSD crypto-exchange accounts holding

USD funds. The total supply of dUSD in circulation is always public information in the dUSD

token smart contract on the blockchain.

For security, since part of the dUSD flow is centralized, it is extremely important to manage

server credentials and smart contract interaction securely. In addition to best practice server

side security, all Ethereum transactions which are triggered by the dUSD servers are subject to

multisig authorization whereby multiple parties must agree before the transaction is executed.

Multisig has proven to be one of the best modern tools for securing blockchain transactions.

25

2.4 Decentralized Issuance of dUSD with Asset-Share Tokens

Users can receive an issuance of dUSD by escrowing their Asset-Share tokens. At a later time,

the user can redeem Asset-Share tokens by returning the corresponding amount of dUSD. The

issued amount of dUSD is always less than the USD price of escrowed tokens by some margin.

The exact rates and ratio of issuance will largely be determined by the historical performance of

the Asset-Share token being escrowed. A very similar decentralized stable coin (bitUSD)

implemented by BitShares has proven to closely hold parity with USD. Stable coin issuance via
18

Asset-Share tokens is beneficial to the YOSEMITE ecosystem because this style of issuance relies

exclusively on crypto-assets held on the blockchain (in our case, Asset-Share tokens which have

value backed by real world assets (real estate, art pieces, ...)) without any need for a centralized

reserve of fiat funds. This makes the dUSD system more decentralized than fiat pegged

currencies with centralized reserves.

 n

dUSD
ASSET-SHARE-TOKEN-BACKED < ∑ (A

i × P
i)

 i = 1

where dUSD
ASSET-SHARE-TOKEN-BACKED : the total amount of dUSD issued via escrowing Asset-Share token ,

n : the number of Asset-Share escrows locked for dUSD issuance ,

A
i : the amount of each Asset-Share token escrowed ,

P
i : the current USD price (changing over time) of each Asset-Share token escrowed

The total amount of dUSD issued from escrowing Asset-Share tokens must always remain

strictly less than the sum of the total value of all escrowed Asset-Share tokens at current prices

in USD. To ensure this equation always holds, the dUSD system will execute a margin call style

operation, liquidating Asset-Tokens into the market, at a price strictly higher than the total value

of dUSD issued from escrowing Asset-Share tokens at the time.

dUSD
ASTB = ∑ dUSDi

ASTB = ∑ (A
i × P

i
E
 × r

i) < ∑ (A
i × P

i
E
 × m

i) ≤ ∑ (A
i × P

i)

if the token price drops below the maintenance margin, P
i < P

i
E
 × m

i , dUSD system automatically

liquidates(sells) the escrowed Asset-Token (A
i) and the dUSDi

ASTB is burned

where ASTB : ASSET-SHARE-TOKEN-BACKED , dUSDi
ASTB : the amount of dUSD issued via each Asset-Share

escrow,

 P
i
E
 : the USD price of an Asset-Share when it is being escrowed ,

r
i : the rate at which dUSD is issued based on the price P

i
E
 , m

i : the maintenance margin rate, 0 < r
i < m

i < 1

The dUSD system provides a hybrid-style model supporting both reserve-backed and

Asset-Share token-backed pegging methods.

Total supply of dUSD = dUSD
RESERVE-BACKED + dUSD

ASSET-SHARE-TOKEN-BACKED

18 BitShares white paper -
http://www.the-blockchain.com/docs/BitShares%20A%20Peer-to-Peer%20Polymorphic%20Digital%20As
set%20Exchange.pdf.

26

http://www.the-blockchain.com/docs/BitShares%20A%20Peer-to-Peer%20Polymorphic%20Digital%20Asset%20Exchange.pdf
http://www.the-blockchain.com/docs/BitShares%20A%20Peer-to-Peer%20Polymorphic%20Digital%20Asset%20Exchange.pdf

The total supply of dUSD tokens in circulation is the sum of dUSD tokens backed by USD

reserves and dUSD tokens backed by Asset-Share escrows.

3 Multi-Platform Clients of YOSEMITE Hybrid Exchange

Figure 10 - Application Architecture

3.1 Current Ethereum Client Problems

Although using Ethereum offers enhanced security and simplifies trading implementation,

introducing apps on Ethereum has always been hard for end-users. The two main barriers to

good user experience are:

- downloading and syncing chain data before use

- using cryptographic keys with an Ethereum wallet

For mass adoption, we need to remove these hurdles so that average users can use

Ethereum-based apps without having to understand the underlying technologies.

27

3.2 Solutions

3.2.1 Connecting to a Remote Ethereum Node

To provide the best user experience, we have decided to maintain and connect the YOSEMITE

exchange Dapp to a remote Ethereum node so that users are able to use the YOSEMITE

exchange services without running nodes of their own. Querying Ethereum data is done through

a connected node by simulating existing normal web services, but storing user credentials and

signing transactions will be handled locally for security reasons. Some have argued against this

kind of remote node architecture since it could compromise security or lead to delays in network

access since it provides a single point of failure. However, we can mitigate these problems by

providing a cluster of Ethereum nodes maintained and secured specifically for YOSEMITE

exchange users. Nonetheless, if users prefer, they may alternatively choose from a list of

available public nodes.

3.2.2 API Injection In a Sandboxed Environment

The primary goal of the YOSEMITE exchange client is to provide an easy-to-use app within a

secure environment. Currently, to use Dapps on Ethereum a user must download Mist/Parity or

use the MetaMask extension with Chrome browser. Of course the YOSEMITE exchange Dapp

would run on these web platforms with web3 support, but they require a general understanding

of cryptographic keys and management of an Ethereum wallet. Aragon offers an Electron
19

powered client; however, it also integrates MetaMask inside an iframe for Ethereum-related

tasks leaving the same account management issues.

Taking inspiration from Aragon’s well-designed client architecture, but without integrating a

full-fledged MetaMask, we have only exposed a minimum set of APIs which are necessary to

interact with Ethereum, thereby allowing the Dapp UI developers to build their own account

creation, account management, transaction signing, and transaction-sending UI.

As you can see in Figure 10, we added an Electron specific element <WebView> to host the Dapp

as guest content. The hosting app injects web3 - Ethereum standard API and wallet APIs into

the webview before the Dapp is loaded, thus the embedded content can create wallets and

manage encrypted private keys within the hosting app context.

The default app loaded on Electron is the hosting app which is running on a renderer process.

Unlike an iframe, the webview we added runs in a separate renderer process keeping the

containing app safe from the embedded content. This architectural design allows for secure

hosting of any Dapp while maximizing custom action flows for Ethereum integration. With this

we can provide custom UX and security to the average YOSEMITE exchange user.

19 Electron is a framework for creating native applications with web technologies.

28

In the future, we will open-source our client application project once it is ready for public

contribution. An Electron package with this architecture of API injection could prove very useful

to the Ethereum development community.

3.2.3 A Packaged Client Application

By simply downloading and installing a packaged desktop application, users are able to trade

asset shares just like any other traditional web application. The client will run on Windows, Mac

and Linux.

3.3 Light Client on Mobile

On our first iterations, we tried interfacing with Ethereum by porting geth with the “light client”

mode enabled on both iOS and Android for mobile support. A popular Ethereum mobile client,

Status.im’s open source project has aided greatly in successfully completing this task. However,

the light client is still an experimental feature and needs some work before it is ready for

production. Until the light client becomes production-deployable, we will take a similar

approach to what we have done with the desktop client environment.

29

